BA-YOLO for Object Detection in Satellite Remote Sensing Images

Author:

Wang Kuilin1,Liu Zhenze1

Affiliation:

1. College of Communication Engineering, Jilin University, Changchun 130022, China

Abstract

In recent years, there has been significant progress in object detection within the domain of natural images. However, the field of satellite remote sensing images has consistently presented challenges due to its significant scale variations and complex background interference. Achieving satisfactory results by directly applying conventional image object detection models has proven to be difficult. To address these challenges, this paper introduces BA-YOLO, an improved version of the YOLOv8 object detection model. It incorporates several notable enhancements. Firstly, to fuse an increased number of features more effectively, we introduce the design concept of a higher-performing Bi-directional Feature Pyramid Network (BiFPN). Secondly, to retain sufficient global contextual information, we integrated a module in BA-YOLO that combines multi-head self-attention and convolutional networks. Finally, we employed various data augmentation techniques such as Mixup, Cutout, Mosaic, and multi-scale training to enhance the model’s accuracy and robustness. Experimental results demonstrate that BA-YOLO outperforms state-of-the-art detectors and has been evaluated on the DOTA dataset. BA-YOLO achieves a mean average precision (mAP) of 0.722 on the DOTA dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3