Stress Analysis and Structural Improvement of LNG Tank Container Frames under Impact from Railway Transport Vehicles

Author:

Wang Zhiqiang1,Qian Caifu1,Wu Zhiwei1

Affiliation:

1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

As the stress of the frame, especially the bottom side rail supports and bottom inclined supports, of a traditional LNG tank container could be significantly greater than its allowable stress, and the container cannot meet the strength requirement of the specification when it is impacted by a transport vehicle during railway transportation, three improved frame structures were suggested, which removed or changed the side rails or bottom inclined supports; the stress and deformation of these improved frames and the tank container were analyzed using the finite element method under the impact test. The results show that all three improved frames can meet the strength requirement, i.e., the maximum Mises stress is less than the allowable stress and the deformation requirement of the diagonal length difference is less than the allowable value, meaning that the tank containers with improved frames can pass the impact test. Moreover, for the FRP support rings and impact side heads, although the maximum values are different, they are still less than the respective allowable stresses. In addition, the maximum value of the middle cross section of the outer vessel in the direction of gravity does not increase with the change in the frame, and the deformation of the outer vessel remains within the elastic range. Therefore, the improvements of the frames have little effect on the stress and deformation of the other components of the tank container, in particular, the inner vessel and outer vessel. Compared to the frame of the traditional tank container, removing the side rails partially or completely can reduce the weight of the frame by 17.99% and 38.34%, respectively, greatly reducing manufacturing and transportation costs. It can also reduce the maximum Mises stress by 38.89% and 39.24% and the maximum diagonal difference by 57.95% and 61.16%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3