Affiliation:
1. Department of Mechanical Engineering, Shibaura Institute of Technology, 3 Chome-7-5 Toyosu, Koto City, Tokyo 135-8548, Japan
Abstract
Photoacoustic (PA) velocimetry holds the advantage of detecting ultrasound signals from selective targets sensitive to specific wavelengths of light irradiation. In particular, it is expected to be applied for measuring blood flow in microvasculature. However, PA velocimetry has not been sufficiently investigated for small velocity ranges down to several tens of millimeters per second. This study evaluates the performance and uncertainty of PA velocity measurements using a single graphite cylinder (GC) as a moving object. A pair of short laser pulses irradiated the object within a brief time interval. The velocity was measured based on the cross-correlation peak of successive PA signal pairs in the time domain. The limiting measurement uncertainty was 3.4 mm/s, determined by the sampling rate of the digitizer. The object motion was controlled in a sinusoidal linear motion, realized using a loudspeaker. With the PA measurement, the velocity of the object was obtained with a time resolution in milliseconds and with directional discrimination. Notably, the PA velocity measurements successfully provided the local velocities of the object across a wide range, with the reference velocity obtained as the time derivative of the displacement data acquired using a laser displacement sensor (LDS). The PA measurement exhibited uncertainties ranging from 0.86 to 2.1 mm/s for the maximum and minimum velocities during the experiment. The uncertainties are consistent with those in stationary cases, and nearly constant in the investigated velocity range. Furthermore, the PA measurements revealed local fine velocities of the object, which were not resolved by the reference velocities of the LDS measurements. The capability of the PA velocity measurement was found to be advantageous for measurements of objects with dynamic variations in magnitude and direction.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science