Application-Oriented Data Analytics in Large-Scale Metal Sheet Bending

Author:

Penalva Mariluz1,Martín Ander1,Ruiz Cristina2,Martínez Víctor2,Veiga Fernando3ORCID,Val Alain Gil del14ORCID,Ballesteros Tomás3ORCID

Affiliation:

1. TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Científico, Parque Científico y Tecnológico de Gipuzkoa, 20009 Donostia-San Sebastián, Spain

2. IDESA Ingeniería y Diseño Europeo, PCTG. Edificio Félix Herreros, 33203 Gijón, Spain

3. Department of Engineering, Campus Arrosadía, Public University of Navarre, Los Pinos Building, 31006 Pamplona, Spain

4. School of Engineering and Technology, International University of La Rioja UNIR, 26006 Logroño, Spain

Abstract

The sheet-metal-forming process is crucial in manufacturing various products, including pipes, cans, and containers. Despite its significance, controlling this complex process is challenging and may lead to defects and inefficiencies. This study introduces a novel approach to monitor the sheet-metal-forming process, specifically focusing on the rolling of cans in the oil-and-gas sector. The methodology employed in this work involves the application of temporal-signal-processing and artificial-intelligence (AI) techniques for monitoring and optimizing the manufacturing process. Temporal-signal-processing techniques, such as Markov transition fields (MTFs), are utilized to transform time series data into images, enabling the identification of patterns and anomalies. synamic time warping (DTW) aligns time series data, accommodating variations in speed or timing across different rolling processes. K-medoids clustering identifies representative points, characterizing distinct phases of the rolling process. The results not only demonstrate the effectiveness of this framework in monitoring the rolling process but also lay the foundation for the practical application of these methodologies. This allows operators to work with a simpler characterization source, facilitating a more straightforward interpretation of the manufacturing process.

Funder

Horizon 2020 Research and Innovation Program of the European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

1. Metal forming beyond shaping: Predicting and setting product properties;Tekkaya;CIRP Ann.,2015

2. Models and modelling for process limits in metal forming;Volk;CIRP Ann.,2019

3. Smart manufacturing and intelligent manufacturing: A comparative review;Wang;Engineering,2021

4. Starman, B., Cafuta, G., and Mole, N. (2021). A Method for Simultaneous Optimization of Blank Shape and Forming Tool Geometry in Sheet Metal Forming Simulations. Metals, 11.

5. Ralph, B., and Stockinger, M. (2020, January 21–25). Digitalization and digital transformation in metal forming: Key technologies, challenges and current developments of industry 4.0 applications. Proceedings of the XXXIX, Colloquium on Metal Forming, Leoben, Austria.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3