Pearson-ShuffleDarkNet37-SE-Fully Connected-Net for Fault Classification of the Electric System of Electric Vehicles

Author:

Lu Quan1,Chen Shan1,Yin Linfei12ORCID,Ding Lu12

Affiliation:

1. Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China

2. Key Laboratory of AI and Information Processing, Education Department of Guangxi Zhuang Autonomous Region, Hechi University, Hechi 546300, China

Abstract

As the core components of electric vehicles, the safety of the electric system, including motors, batteries, and electronic control systems, has always been of great concern. To provide early warning of electric-system failure and troubleshoot the problem in time, this study proposes a novel energy-vehicle electric-system failure-classification method, which is named Pearson-ShuffleDarkNet37-SE-Fully Connected-Net (PSDSEF). Firstly, the raw data were preprocessed and dimensionality reduction was performed after the Pearson correlation coefficient; then, data features were extracted utilizing ShuffleNet and an improved DarkNet37-SE network based on DarkNet53; secondly, the inserted squeeze-and-excitation networks (SE-Net) channel attention were able to obtain more fault-related target information; finally, the prediction results of the ShuffleNet and DarkNet37-SE networks were aggregated with a fully connected neural network to output the classification results. The experimental results showed that the proposed PSDSEF-based electric vehicles electric-system fault-classification method achieved an accuracy of 97.22%, which is better than other classical convolutional neural networks with the highest accuracy of 92.19% (ResNet101); the training time is faster than the average training time of the comparative networks. The proposed PSDSEF has the advantage of high classification accuracy and small number of parameters.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Key Laboratory of AI and Information Processing (Hechi University) of Education Department of Guangxi Zhuang Autonomous Region

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3