Semi-Supervised Domain Adaptation for Individual Identification from Electrocardiogram Signals

Author:

Byeon Yeong-Hyeon1ORCID,Kwak Keun-Chang1ORCID

Affiliation:

1. Interdisciplinary Program in IT-Bio Convergence System, Department of Electronics Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

When acquiring electrocardiogram (ECG) signals, the placement of electrode patches is crucial for acquiring electrocardiographic signals. Constant displacement positions are essential for ensuring the consistency of the ECG signal when used for individual identification. However, achieving constant placement of ECG electrode patches in every trial for data acquisition is challenging. This is because different individuals may attach patches, and even when the same person attaches them, it may be difficult to specify the exact position. Therefore, gathering ECG data from various locations is necessary. However, this process requires a substantial amount of labor and time, owing to the requirement for multiple attempts. Nonetheless, persisting with these efforts enables the endurance of some ECG differences. To reduce labor and time, we propose a semi-supervised domain adaptation for individual identification using ECG signals. The method operates with a full set of original ECG signals and a small set of ECG signals from different placements to account for the differences between the signals in the generative adversarial network (CycleGAN). Specifically, to train the CycleGAN, the ECG signals were transformed into time–frequency representations, and the trained generator was used to generate ECG signals to expand the small set of ECG signals from different placements. Subsequently, both the original and generated signals were used to train the classifier for individual identification. This scenario can also be applied to the classification of ECG signals from different sensors. The PTB-ECG dataset was used for this experiment. We found that the proposed method showed higher accuracy than when only the original ECG signals were used for the training classifier.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3