Femtosecond Pulsed Laser Irradiation of Zirconia for Embedding Silver Nanoparticles in Surface Nanopores

Author:

Yamamuro Yuka1ORCID,Shimoyama Tomotaka2,Nagata Hiroya2,Yan Jiwang1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

2. Inorganic Materials Research Laboratory, Tosoh Corporation, Hayakawa 2743-1, Ayase 252-1123, Japan

Abstract

Femtosecond pulsed laser irradiation was performed to investigate the feasibility and fundamental characteristics of embedding silver nanoparticles onto zirconia ceramic surfaces. By irradiating laser, nanopores were fabricated on the surface of the yttria-stabilized zirconia (YSZ) substrate, and silver nanoparticles were infiltrated and immobilized into the pores using a commercial nano-silver dispersion solution. Numerous nanopores embedded with silver nanoparticles were successfully obtained on the YSZ surface while keeping the grains’ shapes unchanged by controlling laser parameters. Optimizing laser fluence and scanning speed near the ablation threshold made it possible to remove only the excess dispersant that remained on the surface while keeping silver in the pores and without causing machining of the surface of the YSZ substrate. In addition, about 60% embedding in the nanopores was achieved. It was found that the shorter pulse width was suitable to avoid evaporating both dispersant and silver. Cross-sectional observation revealed that the silver nanoparticles were agglomerated to form clumps and were embedded without a gap at the bottom of the pores at a depth of about 600 nm. After laser irradiation, no significant laser-induced phase change was observed in the YSZ substrate, indicating that there was no in-process thermal damage to the bulk. These findings demonstrated the possibility of adding a metal nanoparticle to the zirconia surface by using only a laser process without damaging the properties of the base material during the process. New applications of zirconia, such as the generation of functional surfaces with antibacterial properties, are expected.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3