Thermal Analysis in the Evaluation of Solid Lipid Microparticles in the Form of Aqueous Dispersion and Fine Powder

Author:

Wolska Eliza1ORCID,Regdon Géza2ORCID

Affiliation:

1. Department of Pharmaceutical Technology, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland

2. Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary

Abstract

In the presented study, an attempt was made to investigate the most important attributes of solid lipid microparticles (SLM) using thermal analysis (DSC/TG) in order to determine the importance of this technique in the research and development of lipid microparticles. Particularly interesting in our studies were drug–lipid interactions and modifications of the SLM matrix structure induced by the production method (the hot emulsification method) and further processing (e.g., spray drying), as well as changes occurring during the stability studies. Cyclosporine A, indomethacin and spironolactone were used as model active substances incorporated into SLM. The conducted research demonstrated the significant potential of DSC/TG, especially for the analysis of SLM in the form of fine powder. The method of sample preparation, consisting of evaporation of water at room temperature, turned out to be crucial for the DSC/TG analysis of SLM dispersion. In the case of the tested SLM, the basic and usually the only observed thermal transformation in the DSC spectrum was the endothermic peak associated with the lipid forming a microsphere matrix. This peak is the main source of information about the properties and stability of the tested SLM. The obtained results show that glyceryl behenate (Compritol) is a significantly better lipid for forming lipid microparticles than stearic acid. Although thermal transformations of the incorporated drug substances are not directly visible in the DSC spectra, their impact on the SLM properties can be assessed indirectly, based on changes in the lipid melting point and the shape of the DSC and TG peaks and curves. DSC/TG studies confirmed the lack of an effect of the spray drying process on the properties of drug-loaded SLM with Compritol. Studies have also shown up to a 2-year stability of SLM with CsA.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3