Energy-Efficient Lane Change Trajectory Planning for Highway Traffic Scenarios Considering Different Driving Needs

Author:

Song Rui1,Zhang Xinfeng2ORCID,Zhang Haojie2,Dai Yiheng34,Zhu Yuxuan45,Tian Shengzhe2

Affiliation:

1. School of Information, Chang’an University, Xi’an 710064, China

2. School of Automobile, Chang’an University, Xi’an 710064, China

3. Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

4. Research Institute of Tsinghua, Pearl River Delta, Guangzhou 510530, China

5. Department of Automation, Tsinghua University, Beijing 100084, China

Abstract

This paper proposes an energy-saving lane-changing trajectory model for intelligent electric vehicles at high speeds that considers different driving needs under multiple constraints to address the issues of simple lane-changing considerations and poor safety. An economic index is added to construct a multi-objective optimization function based on the comfort, safety, and efficiency of lane changing. The particle swarm optimization algorithm is used to solve the optimal lane-changing time. The weight of the index is obtained by analyzing different driving needs using the Analytic Hierarchy Process in different scenarios. The multi-objective function is adjusted to plan the optimal lane-changing trajectory that meets driving needs. The simulation shows that the proposed model can generate smooth and feasible lane-changing trajectories that meet different driving needs. The energy consumption analysis results indicate that the construction of economic indicators can effectively reduce the energy consumption of vehicles driving on highways. The tracking analysis results indicate that the target vehicle can smoothly and safely change lanes on the planned trajectory, verifying the effectiveness and rationality of the planned trajectory.

Funder

Key Research and Development Program of Shaanxi

i’an Science and Technology Planning Project

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3