An Asynchronous Parallel I/O Framework for Mass Conservation Ocean Model

Author:

Pang Renbo12ORCID,Yu Fujiang12,Zhang Yu12,Yuan Ye12

Affiliation:

1. National Marine Environmental Forecasting Center, 8 Dahuisi Road, Beijing 100080, China

2. Key Laboratory of Research on Marine Hazards Forecasting, Ministry of Natural Resources of China, 8 Dahuisi Road, Beijing 100080, China

Abstract

I/O is often a performance bottleneck in global ocean circulation models with fine spatial resolution. In this paper, we present an asynchronous parallel I/O framework and demonstrate its efficacy in the Mass Conservation Ocean Model (MaCOM) as a case study. By largely reducing I/O operations in computing processes and overlapping output in I/O processes with computation in computing processes, this framework significantly improves the performance of the MaCOM. Through both reordering output data for maintaining data continuity and combining file access for reducing file operations, the I/O optimizing algorithms are provided to improve output bandwidth. In the case study of the MaCOM, the cost of output in I/O processes can be overlapped by up to 99% with computation in computing processes as decreasing output frequency. The 1D data output bandwidth with these I/O optimizing algorithms is 3.1 times faster than before optimization at 16 I/O worker processes. Compared to the synchronous parallel I/O framework, the overall performance of MaCOM is improved by 38.8% at 1024 computing processes for a 7-day global ocean forecast with 1 output every 2 h through the asynchronous parallel I/O framework presented in this paper.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3