Prediction of Mechanical Properties of Cold-Rolled Steel Based on Improved Graph Attention Network

Author:

Luo Xiaoyang1,Guo Rongping2,Zhang Qiwen2,Tang Xingchang34

Affiliation:

1. Gansu JISCO Group, Hongxing Iron & Steel Co., Ltd., Carbon Steel& Thin Slab Rolling Plant, Jiayuguan 735100, China

2. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

3. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou 730050, China

4. College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

The prediction of mechanical properties of cold-rolled steel is very important for the quality control, process optimization, and cost control of cold-rolled steel, but it is still a challenging task to predict accurately. For the existing graph structure of graph attention networks, it is difficult to effectively establish the complex coupling relationship and nonlinear causal relationship between variables. At the same time, it is considered that the process of cold-rolled steel has typical full-flow process characteristics and the graph attention network makes it difficult to extract the path information between the central node and its higher-order neighborhood. The neural Granger causality algorithm is used to extract the latent relationship between variables, and the basic graph structure of mechanical property prediction data is constructed. Secondly, the node embedding layer is added before the graph attention network, which leverages the symmetry nature of Node2vec method by incorporating both breadth-first and depth-first exploration strategies. This ensures a balanced exploration of diverse paths in the graph, capturing not only local structures but also higher-order relationships. The combined graph attention networks are then able to effectively capture the symmetry path information between nodes and dependencies between variables. The accuracy and superiority of this method are verified by experiments in real cold-rolled steel production cases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3