Deep Reinforcement Learning with Uncertain Data for Real-Time Stormwater System Control and Flood Mitigation

Author:

Saliba Sami M.ORCID,Bowes Benjamin D.ORCID,Adams StephenORCID,Beling Peter A.ORCID,Goodall Jonathan L.ORCID

Abstract

Flooding in many areas is becoming more prevalent due to factors such as urbanization and climate change, requiring modernization of stormwater infrastructure. Retrofitting standard passive systems with controllable valves/pumps is promising, but requires real-time control (RTC). One method of automating RTC is reinforcement learning (RL), a general technique for sequential optimization and control in uncertain environments. The notion is that an RL algorithm can use inputs of real-time flood data and rainfall forecasts to learn a policy for controlling the stormwater infrastructure to minimize measures of flooding. In real-world conditions, rainfall forecasts and other state information are subject to noise and uncertainty. To account for these characteristics of the problem data, we implemented Deep Deterministic Policy Gradient (DDPG), an RL algorithm that is distinguished by its capability to handle noise in the input data. DDPG implementations were trained and tested against a passive flood control policy. Three primary cases were studied: (i) perfect data, (ii) imperfect rainfall forecasts, and (iii) imperfect water level and forecast data. Rainfall episodes (100) that caused flooding in the passive system were selected from 10 years of observations in Norfolk, Virginia, USA; 85 randomly selected episodes were used for training and the remaining 15 unseen episodes served as test cases. Compared to the passive system, all RL implementations reduced flooding volume by 70.5% on average, and performed within a range of 5%. This suggests that DDPG is robust to noisy input data, which is essential knowledge to advance the real-world applicability of RL for stormwater RTC.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep-reinforcement-learning-based water diversion strategy;Environmental Science and Ecotechnology;2024-01

2. Alleviating Urban Pluvial Floods Via Dual-Use Water Plazas Orchestrated by Predictive Algorithms;2024

3. An Intelligent RL-Based Scheduler to Control Flooding in a Renewable Energy Powered Automatic Water Dam Control System;2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE);2023-10-12

4. Analysis of IoT Based System for Flood Monitoring Application;2023 International Conference on Advanced & Global Engineering Challenges (AGEC);2023-06-23

5. Optimal Control of Combined Sewer Systems to Minimize Sewer Overflows by Using Reinforcement Learning;World Environmental and Water Resources Congress 2023;2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3