Affiliation:
1. Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
Abstract
Traditional thermoelectric materials often face a trade-off between efficient power generation (high ZT) and cooling performance. Here, we explore the potential of achieving simultaneous thermoelectric power generation and cooling capability in the recently fabricated bulk ZrSeTe Janus structure using first-principles density functional theory (DFT). The layered ZrSeTe Janus structure exhibits a semimetal character with anisotropic transport properties along the in-plane and out-of-plane directions. Our DFT calculations, including the explicit calculation of relaxation time, reveal a maximum ZT of ~0.065 in the out-of-plane direction at 300 K which is one order of magnitude larger than that in the in-plane direction (ZT~0.006). Furthermore, the thermoelectric cooling performance is also investigated. The in-plane direction shows a cooling performance of 13 W/m·K and a coefficient of performance (COPmax) of ~90 with a temperature difference (ΔT) of 30 K, while the out-of-plane direction has a cooling performance of 2.5 W/m·K and COPmax of ~2.5. Thus, the out-of-plane current from the thermoelectric power generation can be utilized as an in-plane current source for active heat pumping. Consequently, we propose that the semimetal ZrSeTe Janus structure can display bifunctional thermoelectric properties for simultaneous thermoelectric power generation and active cooling.
Funder
National Research Foundation of Korea
Supercomputing Center/Korea Institute of Science and Technology Information