Read Operation Mechanism of Feedback Field-Effect Transistors with Quasi-Nonvolatile Memory States

Author:

Jeon Juhee1,Cho Kyoungah1ORCID,Kim Sangsig1ORCID

Affiliation:

1. Department of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

Abstract

In this study, the read operation of feedback field-effect transistors (FBFETs) with quasi-nonvolatile memory states was analyzed using a device simulator. For FBFETs, write pulses of 40 ns formed potential barriers in their channels, and charge carriers were accumulated (depleted) in these channels, generating the memory state “State 1 (State 0)”. Read pulses of 40 ns read these states with a retention time of 3 s, and the potential barrier formation and carrier accumulation were influenced by these read pulses. The potential barriers were analyzed, using junction voltage and current density to explore the memory states. Moreover, FBFETs exhibited nondestructive readout characteristics during the read operation, which depended on the read voltage and pulse width.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Brain Korea 21 Plus Project through the NRF funded by the Ministry of Science, ICT & Future Planning, Samsung Electronics

Korea University Grant

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3