The Synthesis of Sponge-like V2O5/CNT Hybrid Nanostructures Using Vertically Aligned CNTs as Templates

Author:

Picuntureo Matías12ORCID,García-Merino José Antonio3,Villarroel Roberto4ORCID,Hevia Samuel A.125

Affiliation:

1. Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 6904411, Chile

2. Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 6904411, Chile

3. Departamento de Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Ñuñoa 7800003, Chile

4. Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa 7800003, Chile

5. Millennium Institute on Green Ammonia as Energy Vector—MIGA, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 6904411, Chile

Abstract

The fabrication of sponge-like vanadium pentoxide (V2O5) nanostructures using vertically aligned carbon nanotubes (VACNTs) as a template is presented. The VACNTs were grown on silicon substrates by chemical vapor deposition using the Fe/Al bilayer catalyst approach. The V2O5 nanostructures were obtained from the thermal oxidation of metallic vanadium deposited on the VACNTs. Different oxidation temperatures and vanadium thicknesses were used to study the influence of these parameters on the stability of the carbon template and the formation of the V2O5 nanostructures. The morphology of the samples was analyzed by scanning electron microscopy, and the structural characterization was performed by Raman, energy-dispersive X-ray, and X-ray photoelectron spectroscopies. Due to the catalytic properties of V2O5 in the decomposition of carbonaceous materials, it was possible to obtain supported sponge-like structures based on V2O5/CNT composites, in which the CNTs exhibit an increase in their graphitization. The VACNTs can be removed or preserved by modulating the thermal oxidation process and the vanadium thickness.

Funder

National Agency for Research and Development

Project Subvención a la instalación en la Academia convocatoria 2022

National Doctoral Scholarship CONICYT

FONDEQUIP

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3