Energy Decomposition Scheme for Rectangular Graphene Flakes

Author:

Hendra 1,Witek Henryk A.12ORCID

Affiliation:

1. Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

2. Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Abstract

We show—to our own surprise—that total electronic energies for a family of m × n rectangular graphene flakes can be very accurately represented by a simple function of the structural parameters m and n with errors not exceeding 1 kcal/mol. The energies of these flakes, usually referred to as multiple zigzag chains Z(m,n), are computed for m, n < 21 at their optimized geometries using the DFTB3 methodology. We have discovered that the structural parameters m and n (and their simple algebraic functions) provide a much better basis for the energy decomposition scheme than the various topological invariants usually used in this context. Most terms appearing in our energy decomposition scheme seem to have simple chemical interpretations. Our observation goes against the well-established knowledge stating that many-body energies are complicated functions of molecular parameters. Our observations might have far-reaching consequences for building accurate machine learning models.

Funder

Ministry of Science and Technology of Taiwan

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Reference74 articles.

1. Cramer, C.J. (2004). Essentials of Computational Chemistry: Theories and Models, Wiley. [1st ed.].

2. Density functional tight binding;Elstner;Philos. Trans. R. Soc.,2014

3. Combining machine learning and computational chemistry for predictive insights into chemical systems;Keith;Chem. Rev.,2021

4. Fast and accurate modeling of molecular atomization energies with machine learning;Rupp;Phys. Rev. Lett.,2012

5. Machine learning of molecular electronic properties in chemical compound space;Montavon;New J. Phys.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3