Clutter Suppression for Indoor Self-Localization Systems by Iteratively Reweighted Low-Rank Plus Sparse Recovery

Author:

Sánchez-Pastor JesúsORCID,Miriya Thanthrige Udaya S. K. P.ORCID,Ilgac FurkanORCID,Jiménez-Sáez AlejandroORCID,Jung PeterORCID,Sezgin AydinORCID,Jakoby RolfORCID

Abstract

Self-localization based on passive RFID-based has many potential applications. One of the main challenges it faces is the suppression of the reflected signals from unwanted objects (i.e., clutter). Typically, the clutter echoes are much stronger than the backscattered signals of the passive tag landmarks used in such scenarios. Therefore, successful tag detection can be very challenging. We consider two types of tags, namely low-Q and high-Q tags. The high-Q tag features a sparse frequency response, whereas the low-Q tag presents a broad frequency response. Further, the clutter usually showcases a short-lived response. In this work, we propose an iterative algorithm based on a low-rank plus sparse recovery approach (RPCA) to mitigate clutter and retrieve the landmark response. In addition to that, we compare the proposed approach with the well-known time-gating technique. It turns out that RPCA outperforms significantly time-gating for low-Q tags, achieving clutter suppression and tag identification when clutter encroaches on the time-gating window span, whereas it also increases the backscattered power at resonance by approximately 12 dB at 80 cm for high-Q tags. Altogether, RPCA seems a promising approach to improve the identification of passive indoor self-localization tag landmarks.

Funder

Deutsche Forschungsgemeinschaft

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3