Land Cover Changes Utilising Landsat Satellite Imageries for the Kumasi Metropolis and Its Adjoining Municipalities in Ghana (1986–2022)

Author:

Frimpong Bernard Fosu1,Koranteng Addo2ORCID,Atta-Darkwa Thomas3,Junior Opoku Fosu4,Zawiła-Niedźwiecki Tomasz5

Affiliation:

1. Department of Hydrology, Brandenburg University of Technology, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany

2. Institute of Research, Innovation and Development, Kumasi Technical University, Kumasi P.O. Box 854, Ghana

3. Department of Agricultural and Bioresources Engineering, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana

4. Institute of Geodesy and Geoinformation Science, Straße des 17. Juni 135, 10623 Berlin, Germany

5. Coordination Centre for Environmental Projects, Bitwy Warszawskiej 1920 r. 3, 02-362 Warszawa, Poland

Abstract

Forest loss, unbridled urbanisation, and the loss of arable lands have become contentious issues for the sustainable management of land. Landsat satellite images for 1986, 2003, 2013, and 2022, covering the Kumasi Metropolitan Assembly and its adjoining municipalities, were used to analyse the Land Use Land Cover (LULC) changes. The machine learning algorithm, Support Vector Machine (SVM), was used for the satellite image classification that led to the generation of the LULC maps. The Normalised Difference Vegetation Index (NDVI) and Normalised Difference Built-up Index (NDBI) were analysed to assess the correlations between the indices. The image overlays of the forest and urban extents and the calculation of the annual deforestation rates were evaluated. The study revealed decreasing trends in forestlands, increased urban/built-up areas (similar to the image overlays), and a decline in agricultural lands. However, there was a negative relationship between the NDVI and NDBI. The results corroborate the pressing need for the assessment of LULC utilising satellite sensors. This paper contributes to the existing outlines for evolving land design for the promotion of sustainable land use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3