A New Model Uncertainty Measure of Wave-Induced Motions and Loads on a Container Ship with Forward Speed

Author:

Abdelwahab Hossam S.12ORCID,Wang Shan1ORCID,Parunov Josko3ORCID,Guedes Soares C.1ORCID

Affiliation:

1. Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

2. On Leave from Department of Naval Architecture and Marine Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

3. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia

Abstract

A new uncertainty quantifier is presented for linear transfer functions of wave-induced ship motions and loads obtained by various seakeeping codes. The numerical simulations are conducted for the high-speed Flokstra container ship in regular waves at various heading angles, and the results are compared with existing experimental data. The study employs five numerical codes that are based on three different seakeeping theories, namely strip theory, 3D frequency-domain method, and 3D time-domain method. Multiple measures are applied to quantify the uncertainty in the calculated transfer functions, such as frequency-independent model error, coefficient of determination, and the total difference. In addition, a new measure of uncertainty, termed modified total difference, is proposed for determining the uncertainty of individual seakeeping codes based on experimental data rather than the mean of results obtained by numerical codes. Results show that the uncertainty measures can identify differences between the codes. The predicted wave-induced loads have higher uncertainties compared to motions. The uncertainty assessment shows that none of the applied codes can produce accurate estimates for all wave-induced motions and loads at all heading angles at the same time.

Funder

Portuguese Foundation for Science and Technology

Croatian Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference90 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3