Calculation Model of Vertical Bearing Capacity of Rock-Embedded Piles Based on the Softening of Pile Side Friction Resistance

Author:

Abi Erdi1,Shen Li1,Liu Mingwei1,Du Hongbo1,Shu Dan2,Han Yafeng1

Affiliation:

1. National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Chongqing 400074, China

2. Changjiang Chongqing Harbour and Waterway Engineering Investigation and Design Institute, Chongqing 401147, China

Abstract

Rock-socketed pile is widely used in coastal wharf, Marine bridge, and Marine power engineering, and the end bearing function is considered more in the design process. However, the lateral friction resistance of rock-socketed piles is an important bearing part, and the load transfer mechanism of the pile–soft rock interface is an important research focus. In this paper, a comparative analysis was adopted in the test, and ten groups of test specimens were made, including five groups of natural and saturated mudstone specimens, respectively. The characteristics of interfacial load transfer were analyzed through the shear test of a pile–mudstone interface. A calculation model for the vertical bearing capacity of rock-socketed piles based on the softening of lateral friction resistance was established, and the effects of interface relative displacement, lateral positive pressure, pile length, and pile stiffness on the vertical bearing capacity of rock-socketed piles were analyzed. The results show that the shear strength of the pile–rock interface is lower than that of the mudstone interface, and the interfacial shear strength shows the characteristics of “first increasing, then decreasing, and finally flattening with the increase of shear displacement”. The vertical ultimate bearing capacity and residual bearing capacity under saturation were 89.49% and 89.73% of the natural state, respectively. With the increase of pile side pressure, the proportion of pile side friction resistance increased by 39.96%, and the pile side friction resistance was fully exerted. With the increase of pile length, the vertical ultimate bearing capacity of pile foundation increased, and the residual bearing capacity change value increased from 6.80% to 16.97%. However, the increase in pile stiffness had little effect on the vertical bearing capacity. The calculation model can provide a certain reference for the design and calculation of rock-socketed piles in soft rock areas.

Funder

National Natural Science Foundation of China

Chongqing Research Program of Basic Research and Frontier Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3