Preparation of Artificial Aggregates from Marine Dredged Material: CO2 Uptake and Performance Regulation

Author:

Yu Chunyang1,Cui Chunyi1,Zhao Jiuye1,Liu Fang2,Su Jian3,Yuan Jia1

Affiliation:

1. Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China

2. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China

3. College of Ocean and Civil Engineering, Dalian Ocean University, Dalian 116023, China

Abstract

A continuous treatment process using steel slag powder including foam drying and carbonation processes (termed the SSFD-C method) is a novel technology previously developed in our laboratory. It has achieved the first application of carbonation solidification technology to recycle marine dredged material with high moisture content. The aim of this study is to investigate CO2 uptake and performance regulation in the preparation of carbonated eco-aggregates (CEAs) from dredged soils processed using the SSFD-C method. Steel slag and lime hydrate independently contribute to the strength of CEAs. However, the influence they exert on CO2 uptake, along with other properties, such as pH values and water absorption of CEAs, remains unclear. Furthermore, it is important to clarify whether the soluble silica in a CEA originates from dredged soil or steel slag, as a CEA has the potential to provide silica nutrients to plants. The findings indicated that within the initial three hours of carbonation, the strength of CEAs could approximate 65% of the ultimate stable strength. The moisture absorption for CEAs was noted to be in the 26–30% range. Carbonation over a 24 h period can lower the pH of the CEA to less than 10, and the carbonation reaction can penetrate the core of the 10–15 mm CEA pellets. Carbonation of the lime hydrate fraction was more favorable to increase the CO2 uptake of the CEA, and carbonation of the steel slag fraction was more favorable to decrease the pH value and water absorption of the CEA. The water-soluble silicon of the CEA was found to have been mainly derived from steel slag, while it was established that carbonation could increase the water-soluble silicon content of the CEA by 5–8 times. The result of this study could provide theoretical guidance for regulating the performance of CEAs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Cultivation Program for the Excellent Doctoral Dissertation of Dalian Maritime University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3