Study on the Relationship between Resistivity and the Physical Properties of Seafloor Sediments Based on the Deep Neural Learning Algorithm

Author:

Sun Zhiwen1234,Fan Zhihan2,Zhu Chaoqi2ORCID,Li Kai2,Sun Zhongqiang2,Song Xiaoshuai2,Xue Liang2,Liu Hanlu2,Jia Yonggang2

Affiliation:

1. Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China

2. Shandong Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China

3. Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China

4. Technology Innovation Center for Marine Methane Monitoring, Ministry of Natural Resources, Qingdao 266237, China

Abstract

The occurrence of deep-sea geohazards is accompanied by dynamic changes in the physical properties of seafloor sediments. Therefore, studying the physical properties is helpful for monitoring and early warnings of deep-sea geohazards. Existing physical property inversion methods have problems regarding the poor inversion accuracy and limited application scope. To address these issues, we establish a deep learning model between the resistivity of seafloor sediment and its density, water content, and porosity. Compared with empirical formulas, the deep learning model has the advantages of a more concentrated prediction range and a higher prediction accuracy. This algorithm was applied to invert the spatial distribution characteristics and temporal variation of the seafloor sediment density, water content, and porosity in the South China Sea hydrate test area for 12 days. The study reveals that the dynamic changes in the physical properties of seafloor sediments in the South China Sea hydrate zone exhibit obvious stratification characteristics. The dynamic changes in the physical properties of seafloor sediments are mainly observed at depths of 0–0.9 m below the seafloor, and the sediment properties remain stable at depths of 0.9–1.8 m below the seafloor. This study achieves the monitoring and early warning of dynamic changes in the physical properties of seafloor sediments and provides a guarantee for the safe construction of marine engineering.

Funder

National Natural Science Foundation of China

National Key R&D Program

Key R&D plan of Shandong Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference47 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3