Low-Resource Generation Method for Few-Shot Dolphin Whistle Signal Based on Generative Adversarial Network

Author:

Wang Huiyuan12,Wu Xiaojun2ORCID,Wang Zirui1ORCID,Hao Yukun12ORCID,Hao Chengpeng3ORCID,He Xinyi4,Hu Qiao15ORCID

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

4. Naval Academy of Armament, Beijing 100161, China

5. Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Dolphin signals are effective carriers for underwater covert detection and communication. However, the environmental and cost constraints terribly limit the amount of data available in dolphin signal datasets are often limited. Meanwhile, due to the low computational power and resource sensitivity of Unmanned Underwater Vehicles (UUVs), current methods for real-time generation of dolphin signals with favorable results are still subject to several challenges. To this end, a Masked AutoEncoder Generative Adversarial Network (MAE-GAN) model is hereby proposed. First, considering the few-shot condition, the dataset is extended by using data augmentation techniques. Then, to meet the low arithmetic constraint, a denoising autoencoder with a mask is used to obtain latent codes through self-supervised learning. These latent codes are then utilized in Conditional Wasserstein Generative Adversarial Network-Gradient Penalty (CWGAN-GP) to generate a whistle signal model for the target dataset, fully demonstrating the effectiveness of the proposed method for enhancing dolphin signal generation in data-limited scenarios. The whistle signals generated by the MAE-GAN and baseline models are compared with actual dolphin signals, and the findings indicate that the proposed approach achieves a discriminative score of 0.074, which is 28.8% higher than that of the current state-of-the-art techniques. Furthermore, it requires only 30.2% of the computational resources of the baseline model. Overall, this paper presents a novel approach to generating high-quality dolphin signals in data-limited situations, which can also be deployed on low-resource devices. The proposed MAE-GAN methods provide a promising solution to address the challenges of limited data and computational power in generating dolphin signals.

Funder

Major Program of the National Natural Science Foundation of China

General Program of the National Natural Science Foundation of China

Basic Research Project of China

Rapid Support Fund Project of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3