Reinforcement Learning Based Relay Selection for Underwater Acoustic Cooperative Networks

Author:

Zhang YuzhiORCID,Su Yue,Shen Xiaohong,Wang Anyi,Wang Bin,Liu Yang,Bai Weigang

Abstract

In the complex and dynamically varying underwater acoustic (UWA) channel, cooperative communication can improve throughput for UWA sensor networks. In this paper, we design a reasonable relay selection strategy for efficient cooperation with reinforcement learning (RL), considering the characteristics of UWA channel variation and long transmission delay. The proposed scheme establishes effective state and reward expression to better reveal the relationship between RL and UWA environment. Meanwhile, simulated annealing (SA) algorithm is integrated with RL to improve the performance of relay selection, where exploration rate of RL is dynamically adapted by SA optimization through the temperature decline rate. Furthermore, the fast reinforcement learning (FRL) strategy with pre-training process is proposed for practical UWA network implementation. The whole proposed SA-FRL scheme has been evaluated by both simulation and experimental data. The simulation and experimental results show that the proposed relay selection scheme can converge more quickly than classical RL and random selection with the increase of the number of iterations. The reward, access delay and data rate of SA-FRL can converge at the highest value and are close to the ideal optimum value. All in all, the proposed SA-FRL relay selection scheme can improve the communication efficiency through the selection of the relay nodes with high link quality and low access delay.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3