Mapping Restoration Activities on Dirk Hartog Island Using Remotely Piloted Aircraft Imagery

Author:

Wilson Lucy,van Dongen Richard,Cowen Saul,Robinson Todd P.

Abstract

Conservation practitioners require cost-effective and repeatable remotely sensed data for assistive monitoring. This paper tests the ability of standard remotely piloted aircraft (DJI Phantom 4 Pro) imagery to discriminate between plant species in a rangeland environment. Flights were performed over two 0.3–0.4 ha exclusion plot sites, established as controls to protect vegetation from translocated animal disturbance on Dirk Hartog Island, Western Australia. Comparisons of discriminatory variables, classification potential, and optimal flight height were made between plot sites with different plant species diversity. We found reflectance bands and height variables to have high differentiation potential, whilst measures of texture were less useful for multisegmented plant canopies. Discrimination between species varied with omission errors ranging from 13 to 93%. Purposely resampling c. 5 mm imagery as captured at 20–25 m above terrain identified that a flight height of 120 m would improve capture efficiency in future surveys without hindering accuracy. Overall accuracy at a site with low species diversity (n = 4) was 70%, which is an encouraging result given the imagery is limited to visible spectral bands. With higher species diversity (n = 10), the accuracy reduced to 53%, although it is expected to improve with additional bands or grouping like species. Findings suggest that in rangeland environments with low species diversity, monitoring using a standard RPA is viable.

Funder

Gorgon Barrow Island Net Conservation Benefits Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3