An Assessment of Electric Power Consumption Using Random Forest and Transferable Deep Model with Multi-Source Data

Author:

Cheng LuxiaoORCID,Feng Ruyi,Wang Lizhe,Yan Jining,Liang DongORCID

Abstract

Reliable and fine-resolution electric power consumption (EPC) is essential for effective urban electricity allocation and planning. Currently, EPC data exists mainly as statistics with low resolution. Many studies estimate fine-resolution EPC based on the positive correction between stable nighttime light and EPC distribution. However, EPC is related to various factors other than nighttime light and is spatially non-stationary. Yet this has been ignored in current research. This study developed a novel method to estimate EPC at 500 m resolution by considering spatially non-stationary through fusing geospatial data and high-resolution satellite images. Deep transfer learning and statistical methods were used to extract socio-economic, population density, and landscape features to describe EPC distribution from multi-source geospatial data. Finally, a random forest regression (RFR) model with features and EPC statistics is established to estimate fine-resolution EPC. A study area of Shenzhen city, China, is employed to evaluate the proposed method. The R2 between predicted EPC and statistical EPC is 0.82 at sub-district level in 2013, which is higher than an existing EPC product (Shi’s product) with R2=0.46, illustrating the effectiveness of the proposed method. Moreover, the EPC distribution for Shenzhen from 2013 to 2019 was estimated. Furthermore, the spatiotemporal dynamic of EPC was analyzed at the pixel and sub-district levels.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3