Assessment of FSDAF Accuracy on Cotton Yield Estimation Using Different MODIS Products and Landsat Based on the Mixed Degree Index with Different Surroundings

Author:

Meng Linghua,Liu Huanjun,Ustin Susan L.ORCID,Zhang Xinle

Abstract

Research on fusion modeling of high spatial and temporal resolution images typically uses MODIS products at 500 m and 250 m resolution with Landsat images at 30 m, but the effect on results of the date of reference images and the ‘mixed pixels’ nature of moderate-resolution imaging spectroradiometer (MODIS) images are not often considered. In this study, we evaluated those effects using the flexible spatiotemporal data fusion model (FSDAF) to generate fusion images with both high spatial resolution and frequent coverage over three cotton field plots in the San Joaquin Valley of California, USA. Landsat images of different dates (day-of-year (DOY) 174, 206, and 254, representing early, middle, and end stages of the growing season, respectively) were used as reference images in fusion with two MODIS products (MOD09GA and MOD13Q1) to produce new time-series fusion images with improved temporal sampling over that provided by Landsat alone. The impact on the accuracy of yield estimation of the different Landsat reference dates, as well as the degree of mixing of the two MODIS products, were evaluated. A mixed degree index (MDI) was constructed to evaluate the accuracy and time-series fusion results of the different cotton plots, after which the different yield estimation models were compared. The results show the following: (1) there is a strong correlation (above 0.6) between cotton yield and both the Normalized Difference Vegetation Index (NDVI) from Landsat (NDVIL30) and NDVI from the fusion of Landsat with MOD13Q1 (NDVIF250). (2) Use of a mid-season Landsat image as reference for the fusion of MODIS imagery provides a better yield estimation, 14.73% and 17.26% higher than reference images from early or late in the season, respectively. (3) The accuracy of the yield estimation model of the three plots is different and relates to the MDI of the plots and the types of surrounding crops. These results can be used as a reference for data fusion for vegetation monitoring using remote sensing at the field scale.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3