Copper Bioremediation Ability of Ciliate Paramecium multimicronucleatum Isolated from Industrial Wastewater

Author:

Liaqat AyeshaORCID,Zahra Itrat,Abbas Syed Zaghum,Wabaidur Saikh MohammadORCID,Eldesoky Gaber E.,Islam Md AtaulORCID,Rafatullah MohdORCID,Shakoori Farah R.,Shakoori Abdul R.ORCID

Abstract

The growing problems of environmental damage have been caused by the continuous outrush of heavy metals from industrial wastewater. To resolve this issue, bioremediation is playing a safe and eco-friendly role in the removal of these heavy metals from environmental wastewater bodies. It has provoked demand with regard to understanding the mechanisms of bioaccumulation and detoxification developed by the organisms living in the heavy metal-exposed industrial wastewater. The present investigation focuses on Paramecium multimicronucleatum, a ciliated protozoan isolated from industrial wastewater, with the objective of assessing its capabilities as an environmental bioremediator. Purified cell culture was maintained in bold basal salt medium and optimum growth conditions were determined. A maximum growth rate of 6.0–9.0 × 103 cells/mL at 25–30 °C and pH 7.0 was observed, and therefore revealed to be the optimal growth conditions for this species. It can tolerate 40–50 µg/mL of copper ion stress with little effect on growth rate as compared to control. It is able to uptake more than 80% of copper ions from the medium in 96 h. A significant twofold rise in glutathione content and non-protein thiols was recorded as an indication of a defensive mechanism in place to fight against the oxidative stress caused by the copper treatment. A notable increase of 50–70 µg/mL in total protein content of stressed cells in comparison to non-stressed was also observed as potential induction of some particular proteins for the purpose of resistance against copper stress.

Funder

King Saud University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3