Mechanism and Kinetic Analysis of the Degradation of Atrazine by O3/H2O2

Author:

Lu Yixin,Tang Chenghan,Liu Yujie,Chen Jiao

Abstract

In phosphate buffer, the degradation of ATZ by ozone/(O3/H2O2) under various circumstance was explored and the degradation mechanism and dynamics were probed. The findings revealed that when maintaining the reaction temperature at 25 °C, the H2O2 concentration and the O3 concentration were 20 mol/L and 20 mol/L, respectively. Moreover, the degradation rate of 5 mol/L ATZ under the influence of O3/H2O2 was 92.59% in phosphate buffer at pH7. The mechanism analysis showed that HO• and O3 underwent co-oxidized degradation and that the HO• and O3 oxidation degradation ratios were close to 1:1 under acidic conditions. Furthermore, HO• oxidative degradation dominated the ATZ degradation process. The kinetics analysis showed that the ATZ kinetics of O3/H2O2 degradation were more compatible with quasi-second-order reaction kinetics under different temperatures, pH values, and H2O2 concentrations.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3