Design and Analysis of a Low-Voltage VCO: Reliability and Variability Performance

Author:

Azadmousavi Tayebeh1,Ghafar-Zadeh Ebrahim2ORCID

Affiliation:

1. Department of Electrical Engineering, University of Bonab, Bonab 55517-61167, Iran

2. Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada

Abstract

This paper investigates an adaptive body biasing (ABB) circuit to improve the reliability and variability of a low-voltage inductor–capacitor (LC) voltage-controlled oscillator (VCO). The ABB circuit provides VCO resilience to process variability and reliability variation through the threshold voltage adjustment of VCO’s transistors. Analytical equations considering the body bias effect are derived for the most important relations of the VCO and then the performance is verified using the post-layout simulation results. Under a 0.16% threshold voltage shift, the sensitivity of the normalized phase noise and transconductance of the VCO with the ABB circuit compared to the constant body bias (CBB) decreases by around 8.4 times and 3.1 times, respectively. Also, the sensitivity of the normalized phase noise and transconductance of the proposed VCO under 0.16% mobility variations decreases by around 1.5 times and 1.7 times compared to the CBB, respectively. The robustness of the VCO is also examined using process variation analysis through Monte Carlo and corner case simulations. The post-layout results in the 180 nm CMOS process indicate that the proposed VCO draws a power consumption of only 398 µW from a 0.6 V supply when the VCO frequency is 2.4 GHz. It achieves a phase noise of −123.19 dBc/Hz at a 1 MHz offset and provides a figure of merit (FoM) of −194.82 dBc/Hz.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference80 articles.

1. Point-of-care sensors for the management of sepsis;Reddy;Nat. Biomed. Eng.,2018

2. John, A.S., and Price, C.P. (2014). Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev., 35.

3. Biosensors in POCT application;Deng;Prog. Chem.,2016

4. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer;Rusling;Analyst,2010

5. Baryeh, K., Takalkar, S., Lund, M., and Liu, G. (2017). Medical Biosensors for Point of Care (POC) Applications, Elsevier.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3