Advanced Design and Fabrication of Dual-Material Honeycombs for Improved Stiffness and Resilience

Author:

Dong Jiajing12,Ying Songtao12,Qiu Zhuohao12,Bao Xixi12,Chu Chengyi2,Chen Hao2,Guo Jianjun2,Sun Aihua2

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

2. Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

Abstract

Auxetic re-entrant honeycomb (AREH) structures, consisting of a single soft or tough material, have long faced the challenge of balancing stiffness and rebound resilience. To achieve this balance, dual-material printing technology is employed to enhance shock absorption by combining layers of soft and tough materials. Additionally, a novel structure called the curved re-entrant honeycomb (CREH) structure has been introduced to improve stiffness. The selected materials for processing the composite structures of AREH and CREH are the rigid thermoplastic polymer polylactic acid (PLA) and the soft rubber material thermoplastic polyurethane (TPU), created utilizing fused deposition modeling (FDM) 3D printing technology. The influence of the material system and structure type on stress distribution and mechanical response was subsequently investigated. The results revealed that the dual-material printed structures demonstrated later entry into the densification phase compared to the single-material printed structures. Moreover, the soft material in the interlayer offered exceptional protection, thereby ensuring the overall integrity of the structure. These findings effectively serve as a reference for the design of dual-material re-entrant honeycombs.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3