Effect of Channel Shape on Performance of Printed Indium Gallium Zinc Oxide Thin-Film Transistors

Author:

Yan Xingzhen1ORCID,Li Bo1,Zhang Yiqiang1,Wang Yanjie1,Wang Chao1,Chi Yaodan1,Yang Xiaotian1

Affiliation:

1. Key Laboratory of Architectural Cold Climate Energy Management, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China

Abstract

Printing technology will improve the complexity and material waste of traditional deposition and lithography processes in device fabrication. In particular, the printing process can effectively control the functional layer stacking and channel shape in thin-film transistor (TFT) devices. We prepared the patterning indium gallium zinc oxide (IGZO) semiconductor layer with Ga, In, and Zn molar ratios of 1:2:7 on Si/SiO2 substrates. And the patterning source and drain electrodes were printed on the surface of semiconductor layers to construct a TFT device with the top contact and bottom gate structures. To overcome the problem of uniform distribution of applied voltages between electrode centers and edges, we investigated whether the circular arc channel could improve the carrier regulation ability under the field effect in printed TFTs compared with a traditional structure of rectangular symmetry and a rectangular groove channel. The drain current value of the IGZO TFT with a circular arc channel pattern was significantly enhanced compared to that of a TFT with rectangular symmetric source/drain electrodes under the corresponding drain–source voltage and gate voltage. The field effect properties of the device were obviously improved by introducing the arc-shaped channel structure.

Funder

Science and Technology Development Project of Jilin Province, China

National Key R&D Program of Strategic Advanced Electronic Materials of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3