Effect of Cryogenic Treatments on Hardness, Fracture Toughness, and Wear Properties of Vanadis 6 Tool Steel

Author:

Yarasu Venu1,Jurci Peter1ORCID,Ptacinova Jana1ORCID,Dlouhy Ivo2ORCID,Hornik Jakub3

Affiliation:

1. Faculty of Materials Technology Based in Trnava, Slovak University of Technology Based in Bratislava, 917 24 Trnava, Slovakia

2. Institute of Physics of Materials, Czech Academy of Sciences, Zizkova 22, 616 62 Brno, Czech Republic

3. Department of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University, 160 00 Prague, Czech Republic

Abstract

The ability of cryogenic treatment to improve tool steel performance is well established; however, the selection of optimal heat treatment is pivotal for cost reduction and extended tool life. This investigation delves into the influence of distinct cryogenic and tempering treatments on the hardness, fracture toughness, and tribological properties of Vanadis 6 tool steel. Emphasis was given to comprehending wear mechanisms, wear mode identification, volume loss estimation, and detailed characterization of worn surfaces through scanning electron microscopy coupled with energy dispersive spectroscopy and confocal microscopy. The findings reveal an 8–9% increase and a 3% decrease in hardness with cryogenic treatment compared to conventional treatment when tempered at 170 °C and 530 °C, respectively. Cryotreated specimens exhibit an average of 15% improved fracture toughness after tempering at 530 °C compared to conventional treatment. Notably, cryogenic treatment at −140 °C emerges as the optimum temperature for enhanced wear performance in both low- and high-temperature tempering scenarios. The identified wear mechanisms range from tribo-oxidative at lower contacting conditions to severe delaminative wear at intense contacting conditions. These results align with microstructural features, emphasizing the optimal combination of reduced retained austenite and the highest carbide population density observed in −140 °C cryogenically treated steel.

Funder

Scientific Grant Agency of the Ministry of Education, science, research and sport of the Slovak Republic and the Slovak Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3