Synthesis and Surface Strengthening Modification of Silica Aerogel from Fly Ash

Author:

Zhang Lei12,Wang Qi1,Zhao Haocheng1,Song Ruikang1,Chen Ya1,Liu Chunjiang1,Han Zhikun1

Affiliation:

1. School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China

Abstract

This study focuses on using activated fly ash to preparate silica aerogel by the acid solution–alkali leaching method and ambient pressure drying. Additionally, to improve the performance of silica aerogel, C6H16O3Si (KH-570) and CH3Si(CH3O)3 (MTMS) modifiers were used. Finally, this paper investigated the factors affecting the desilication rate of fly ash and analyzed the structure and performance of silica aerogel. The experimental results show that: (1) The factors affecting the desilication rate are ranked as follows: hydrochloric acid concentration > solid–liquid ratio > reaction temperature > reaction time. (2) KH-570 showed the best performance, and when the volume ratio of the silica solution to it was 10:1, the density of silica aerogel reached a minimum of 183 mg/cm3. (3) The optimal process conditions are a hydrochloric acid concentration of 20 wt%, a solid–liquid ratio of 1:4, a reaction time of two hours, and a reaction temperature of 100 °C. (4) The optimal performance parameters of silica aerogel were the thermal conductivity, specific surface area, pore volume, average pore size, and contact angle values, with 0.0421 W·(m·K)−1, 487.9 m2·g−1, 1.107 cm3·g−1, 9.075 nm, and 123°, respectively. This study not only achieves the high-value utilization of fly ash, but also facilitates the effective recovery and utilization of industrial waste.

Funder

Technology Innovation Leading Program of Shaanxi

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3