Study on the Quasi-Ductile Fracture Behavior of Glubam: The Role of Fiber Distribution

Author:

Jiang Haolei1,Liu Wen1

Affiliation:

1. Department of Civil Engineering, Beijing Forestry University, Beijing 100083, China

Abstract

Cracking in fibrous composites is inevitable, and the fracture pattern is influenced by its fiber distribution. Bamboo fibrous composites have a distinct fiber distribution, which makes them an excellent material for studng the relationship between fiber distribution and fracture mode. Glued laminated bamboo is a bi-directional bamboo fibrous composite, which is called glubam for short. Its vertical thickness is about 28 mm, and the ratio of the number of longitudinal fiber layers to the number of transverse fiber layers is 4:1. This study conducted three-point bending fracture tests on single-edge notched specimens of glubam to investigate its mode-I fracture characteristics in the transverse vertical direction. The deformation curves show that the specimens still have the load-carrying capacity after reaching the maximum load, and the load shows a trend of step-like decrease, exhibiting a quasi-ductile fracture behavior. Overall, the fracture process can be divided into four stages, including linear, softening, quasi-ductile, and failure stages. In this study, based on certain assumptions, the prefabricated notch length a0 was adjusted according to the position of the transverse fibers. Subsequently, the non-linear elastic fracture mechanics method was employed to calculate the fracture parameters of glubam during the softening and quasi-ductile stages, including the fracture toughness KIC* and fiber tensile strength ft. The deviation of the fracture parameters between the two stages is within 10%, indicating that the correction of the a0 is correct. This indirectly proves that the staggered structure formed by longitudinal and transverse fibers is responsible for the quasi-toughness fracture of glubam. Finally, this study summarized and analyzed the quasi-ductile fracture behavior and found that materials or structures exhibiting quasi-ductile fracture behavior often possess a staggered structure. This staggered structure makes the crack in the form of semi-stable propagation, while the load decreases in a step-like manner.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3