A High Copper Concentration Copper-Quadrol Complex Electroless Solution for Chip Bonding Applications

Author:

Huang Jeng-Hau1,Shih Po-Shao1,Renganathan Vengudusamy1ORCID,Gräfner Simon Johannes1,Lin Yu-Chun1,Kao Chin-Li2,Lin Yung-Sheng2,Hung Yun-Ching2,Kao Chengheng Robert1ORCID

Affiliation:

1. Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan

2. Advanced Semiconductor Engineering Group, Kaohsiung 811, Taiwan

Abstract

This article presents a novel bonding method for chip packaging applications in the semiconductor industry, with a focus on downsizing high-density and 3D-stacked interconnections to improve efficiency and performance. Microfluidic electroless interconnections have been identified as a potential solution for bonding pillar joints at low temperatures and pressures. However, the complex and time-consuming nature of their production process hinders their suitability for mass production. To overcome these challenges, we propose a tailored plating solution using an enhanced copper concentration and plating rate. By eliminating the need for fluid motion and reducing the process time, this method can be used for mass production. The Taguchi approach is first used to optimize the copper–quadrol complex solution with the plating rate and decomposition time. This solution exhibits a copper concentration that is over five times higher than that of conventional solutions, a plating rate of 22.2 μm/h, and a decomposition time of 8 min on a Cu layer substrate. This technique enables Cu pillars to be successfully bonded within 7 min at 35 °C. Planarizing the pillar surface yields a high bonding percentage of 99%. Mechanical shear testing shows a significant fracture strength of 76 MPa.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3