Classification of Visual Smoothness Standards Using Multi-Scale Areal Texture Parameters and Low-Magnification Coherence Scanning Interferometry

Author:

Redford Jesse1ORCID,Mullany Brigid1

Affiliation:

1. Department of Mechanical Engineering, UNC Charlotte, Charlotte, NC 28223, USA

Abstract

The ability to objectively specify surface finish to ensure consistent visual appearance addresses a vital need in surface coating engineering. This work demonstrates how a computational framework, called surface quality and inspection descriptors (SQuID™), can be leveraged to effectively rank different grades of surface finish appearances. ISO 25178-2 areal surface metrics extracted from bandpass-filtered measurements of a set of ten visual smoothness standards taken on a coherent scanning interferometer are used to quantify different grades of powder-coated surface finish. The ability to automatically classify the standard tiles using multi-scale areal texture parameters is compared to parameters obtained from a hand-held gloss meter. The results indicate that the ten different surface finishes can be automatically classified with accuracies as low as 65% and as high as 99%, depending on the filtering and parameters used to quantify the surfaces. The highest classification accuracy is achieved using only five multi-scale topography descriptions of the surface.

Funder

University of North Carolina Charlotte

Publisher

MDPI AG

Reference44 articles.

1. Shi, Y., Jiang, Z., Cao, J., and Ehmann, K.F. (2020). Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining. Appl. Surf. Sci., 500.

2. Effects of surface roughness on wettability;Nakae;Acta Mater.,1998

3. Wettability versus roughness of engineering surfaces;Kubiak;Wear,2011

4. Arumugam, K., Smith, S.T., and Her, T.-H. (2018, January 4–9). Limitations caused by rough surfaces when used as the mirror in displacement measurement interferometry using a microchip laser source. Proceedings of the American Society of Precision Engineering- 33rd Annual Meeting, Las Vegas, NV, USA.

5. Correlation between gloss reflectance and surface texture in photographic paper;Vessot;Scanning,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3