Research on the Method of Foreign Object Detection for Railway Tracks Based on Deep Learning

Author:

Ning Shanping12,Ding Feng1,Chen Bangbang1

Affiliation:

1. School of Mechatronic Engineering, Xi’an Technological University, Xi’an 710016, China

2. Railway Transportation Institute, Guangdong Communication Polytechnic, Guangzhou 510650, China

Abstract

Addressing the limitations of current railway track foreign object detection techniques, which suffer from inadequate real-time performance and diminished accuracy in detecting small objects, this paper introduces an innovative vision-based perception methodology harnessing the power of deep learning. Central to this approach is the construction of a railway boundary model utilizing a sophisticated track detection method, along with an enhanced UNet semantic segmentation network to achieve autonomous segmentation of diverse track categories. By employing equal interval division and row-by-row traversal, critical track feature points are precisely extracted, and the track linear equation is derived through the least squares method, thus establishing an accurate railway boundary model. We optimized the YOLOv5s detection model in four aspects: incorporating the SE attention mechanism into the Neck network layer to enhance the model’s feature extraction capabilities, adding a prediction layer to improve the detection performance for small objects, proposing a linear size scaling method to obtain suitable anchor boxes, and utilizing Inner-IoU to refine the boundary regression loss function, thereby increasing the positioning accuracy of the bounding boxes. We conducted a detection accuracy validation for railway track foreign object intrusion using a self-constructed image dataset. The results indicate that the proposed semantic segmentation model achieved an MIoU of 91.8%, representing a 3.9% improvement over the previous model, effectively segmenting railway tracks. Additionally, the optimized detection model could effectively detect foreign object intrusions on the tracks, reducing missed and false alarms and achieving a 7.4% increase in the mean average precision (IoU = 0.5) compared to the original YOLOv5s model. The model exhibits strong generalization capabilities in scenarios involving small objects. This proposed approach represents an effective exploration of deep learning techniques for railway track foreign object intrusion detection, suitable for use in complex environments to ensure the operational safety of rail lines.

Funder

Xi’an Science and Technology Plan Project

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3