Spatiotemporal Landslide Susceptibility Mapping Incorporating the Effects of Heavy Rainfall: A Case Study of the Heavy Rainfall in August 2021 in Kitakyushu, Fukuoka, Japan

Author:

Li Jiaying,Wang Weidong,Li Yange,Han ZhengORCID,Chen Guangqi

Abstract

Landslide represents an increasing menace causing huge casualties and economic losses, and rainfall is a predominant factor inducing landslides. Landslide susceptibility assessment (LSA) is a commonly used and effective method to prevent landslide risk, however, the LSA does not analyze the impact of the rainfall on landslides which is significant and non-negligible. Therefore, the spatiotemporal LSA considering the inducing effect of rainfall is proposed to improve accuracy and applicability. In this study, the influencing factors are selected using the chi-square test, out-of-bag error and multicollinearity test. The spatial LSA are thus obtained using the random forest (RF) model, deep belief networks model and support vector machine, and compared using receiver operating characteristic curve and seed cell area index to determine the optimal assessment result. According to the heavy rainfall characteristics in the study area, the rainfall period is divided into four stages, and the effective rainfall model is employed to generate the rainfall impact (RI) maps of the four stages. The spatiotemporal LSAs are obtained by coupling the optimal spatial LSA and various RI maps and verified using the landslide warning map. The results demonstrate that the optimal spatiotemporal LSA is obtained using the spatial LSA of the RF model and temporal LSA of the rainfall data in the peak stage. It can predict the area where rainfall-induced landslides are likely to occur and prevent landslide risk.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3