A Compendium of Performance Metrics, Pricing Schemes, Optimization Objectives, and Solution Methodologies of Demand Side Management for the Smart Grid

Author:

Ahmad Sadiq,Ahmad Ayaz,Naeem Muhammad,Ejaz WaleedORCID,Kim Hyung

Abstract

The curtailing of consumers’ peak hours demands and filling the gap caused by the mismatch between generation and utilization in power systems is a challenging task and also a very hot topic in the current research era. Researchers of the conventional power grid in the traditional power setup are confronting difficulties to figure out the above problem. Smart grid technology can handle these issues efficiently. In the smart grid, consumer demand can be efficiently managed and handled by employing demand-side management (DSM) algorithms. In general, DSM is an important element of smart grid technology. It can shape the consumers’ electricity demand curve according to the given load curve provided by the utilities/supplier. In this survey, we focused on DSM and potential applications of DSM in the smart grid. The review in this paper focuses on the research done over the last decade, to discuss the key concepts of DSM schemes employed for consumers’ demand management. We review DSM schemes under various categories, i.e., direct load reduction, load scheduling, DSM based on various pricing schemes, DSM based on optimization types, DSM based on various solution approaches, and home energy management based DSM. A comprehensive review of DSM performance metrics, optimization objectives, and solution methodologies is’ also provided in this survey. The role of distributed renewable energy resources (DERs) in achieving the optimization objectives and performance metrics is also revealed. The unpredictable nature of DERs and their impact on DSM are also exposed. The motivation of this paper is to contribute by providing a better understanding of DSM and the usage of DERs that can satisfy consumers’ electricity demand with efficient scheduling to achieve the performance metrics and optimization objectives.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3