Fracture Characteristics and Their Influence on Gas Seepage in Tight Gas Reservoirs in the Kelasu Thrust Belt (Kuqa Depression, NW China)

Author:

Dong Yue,Lu Xuesong,Fan Junjia,Zhuo Qingong

Abstract

Natural fractures were generally accepted as a key factor influencing the gas seepage performance in tight gas reservoirs in Kelasu Thrust Belt (KTB). However, the mechanism was not fully clarified, especially from a microscopic perspective. Based on observation of core samples and cast thin sections and gas charging experiment on core plugs, the parameters of fractures and seepage performance in fractured tight reservoirs are studied; further, the controlling effect of fractures on gas seepage was discussed. The results show that in KTB fractures could be categorized by the size of their apertures as macro-fractures (aperture width ranges from 0.1 to 2 mm) and micro-fractures (aperture width ranges from 5 to 100 μm), which appear in the form of fractures networks. Tectonic deformations and abnormal high fluid pressure control the fracture density: near faults or anticlines (folds), fracture density increases, and fluid pressure of 15 MPa increases the aperture by 50%, and induces new fractures. The fracture networks with high linear density significantly improves tight reservoir quality and seepage performance: it enhances the reservoir permeability by 1–4 orders of magnitude, and the relative gas permeability by 2–10 magnitude; by enhancing permeability, the fracture networks reduce the initial flowing gradient from as high as 0.41 MPa/cm to 0 Mpa/cm, and make the gas flowing possible.

Funder

CNPC

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference59 articles.

1. The evolution of pore-scale fluid-saturation in low-permeability sandstone reservoirs

2. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance;Zou;Acta Pet. Sin.,2012

3. The Technology And Economics Of Gas Recovery From Tight Sands

4. Natural gas policy act of 1978;Mocavoy;Nat. Res. J.,1979

5. Geologic Aspects of Tight Gas Reservoirs in the Rocky Mountain Region

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3