Author:
Bastami Alireza,Pourafshary Peyman,Shafiei Ali
Abstract
Very few thermodynamic models exist for estimation of density alteration due to solution of CO2 in a pure H2O and CaCl2–H2O system. All of these models require density of CaCl2 solution to estimate density of CaCl2–H2O–CO2 system. Similarly, models presented to calculate CaCl2 solution density need pure H2O density in advance. The main approach to model density of CaCl2–H2O–CO2 system is based on estimation of density alteration of CaCl2–H2O system due to the solution of CO2 mole fraction. Hence, to estimate CO2–CaCl2–H2O system density, density of CaCl2 solution is necessary, and to estimate density of CaCl2–H2O system, density of pure H2O is required in advance. Firstly in this paper, density of 0, 1.91, and 4.85 mol/kg CaCl2 solutions saturated with CO2 at 328.15 to 375.15 °K and 68.9 to 206.8 Bar were measured through laboratory experiments. Then, a new model is developed to estimate the density of CaCl2 solutions containing CO2 based on the experiments conducted in this study. The average and maximum absolute deviations of the new model from the experimental data are 0.0047 and 0.0177, respectively. Hence, the new model combined with other existing models to separately calculate density of the CaCl2 solution can be used to accurately predict density of the CaCl2–H2O–CO2 system in a wide range of P-T applicable for subsurface reservoirs.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献