Evaluation of Displacement Effects of Different Injection Media in Tight Oil Sandstone by Online Nuclear Magnetic Resonance

Author:

Chen TingORCID,Yang Zhengming,Luo Yutian,Lin Wei,Xu Jiaxiang,Ding Yunhong,Niu Jialiang

Abstract

In order to evaluate the displacement effect of four kinds of injection media in tight oil sandstone, water, active water, CO2, N2 flooding experiments were carried out in laboratory. Online Nuclear Magnetic Resonance (NMR) spectrometers combine the advantages of NMR technology and core displacement experiments. In the displacement experiment, NMR data of different injection volumes were obtained and magnetic resonance imaging (MRI) was carried out. The results showed that micro and sub-micropores provided 62–97% of the produced crude oil. The enhanced oil recovery ratio of active water flooding was higher than that of conventional water flooding up to 10%. The recovery ratio of gas flooding in micro and sub-micropores was 60–70% higher than that of water flooding. The recovery ratio of CO2 flooding was 10% higher than that of N2 flooding. The remaining oil was mainly distributed in pores larger than 0.1 μm. Under the same permeability level, the remaining oil saturation of cores after gas flooding was 10–25% lower than water flooding. From MRI images, the displacement effects from good to bad were as follows: CO2 flooding, N2 flooding, active water flooding, and conventional water flooding.

Funder

Ministry of Science and Technology of the People's Republic of China

China National Petroleum Corporation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3