Assessing Niche Dynamics and Population Connectivity in an Endangered Tree Species, Emmenopterys henryi: Implications for Conservation and Management

Author:

Feng Li1ORCID,Wang Zheng-Yuan1,Zhou Tao1ORCID,Zhang Yong-Hua2ORCID,Wang Yi-Han3

Affiliation:

1. School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China

2. College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China

3. College of Life Sciences, Henan Agriculture University, Zhengzhou 450002, China

Abstract

Understanding the niche dynamic among distinct populations and delineating the dispersal corridors that exist between them under current climates is critical for elucidating the contemporary forces driving genetic divergence, facilitating population connectivity, and informing targeted conservation efforts, particularly for species exhibiting pronounced intraspecific lineages. In this study, we focus on evaluating the range and niche dynamics of the intraspecific lineages of Emmenopterys henryi and exploring potential patterns of population connectivity both within and across these lineages. Our findings unveiled a significant niche divergence between the two intraspecific lineages, characterized by limited overlap in climatic conditions and suitable ranges. Furthermore, our analysis of population connectivity revealed the presence of dispersal routes with varying degrees of connectivity within each lineage, while low connectivity was observed between the two lineages. Our results highlight the critical role of fine-scale ecological niche models (ENMs) and genetic connectivity analyses in elucidating the complexities of niche evolution and genetic connectivity, particularly for species with discrete intraspecific lineages. In addition, given the fact that rapid genetic erosion of species inhabiting the regions we focus on in this study is often associated with habitat loss and fragmentation, our findings will also offer valuable insights for designing targeted conservation strategies aimed at restoring connectivity and increasing local population sizes for this endangered species.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3