Abstract
Tidal flats (non-vegetated area) are soft-sediment habitats that are alternately submerged and exposed to the air by changeable tidal levels. The tidal flat dynamics research mainly utilizes the cell-level comparisons between the consecutive snapshots, but the in-depth study requires more detailed information of the dynamic activities. To better track, represent, and analyze tidal flats’ dynamic activities, this study proposes an integrated approach of a three-level Geographic Information Science (GIS) framework and a graph model. In the three-level GIS framework, the adjacent cells are assembled as the objects, and the objects on different time steps are linked as lifecycles by tracking the predecessor–successor relationships. Furthermore, eleven events are defined to describe the dynamic activities throughout the lifecycles. The graph model provides a better way to represent the lifecycles, and graph operators are utilized to facilitate the event analysis. The integrated approach is applied to tidal flats’ dynamic activities in the southwest tip of Florida Peninsula from 1984 to 2018. The results suggest that the integrated approach provides an effective way to track, represent, and analyze the dynamic activities of tidal flats, and it offers a novel perspective to examine other dynamic geographic phenomena with large spatiotemporal scales.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献