Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using Juglans nigra Shell Biomass Activated Carbon as Potential Adsorbent: Optimization, Isotherm, Kinetic, and Thermodynamic Investigation

Author:

Parimelazhagan VairavelORCID,Yashwath Pranesh,Arukkani Pushparajan Dharun,Carpenter Jitendra

Abstract

Recently, the treatment of effluent by agricultural waste biomass has significantly attracted wide interest among researchers due to its availability, efficacy, and low cost. The removal of toxic Remazol Brilliant Blue-R (RBBR) from aqueous solutions using HNO3-treated Juglans nigra (walnut) shell biomass carbon as an adsorbent has been examined under various experimental conditions, such as initial pH, adsorbate concentration, adsorbent dosage, particle size, agitation speed, and type of electrolyte. The experiments are designed to achieve the maximum dye removal efficiency using the response surface methodology (RSM). The optimum pH, adsorbent dosage, and particle size were found to be 1.5, 7 g L−1, and 64 μm, respectively for maximum decolorization efficiency (98.24%). The prepared adsorbent was characterized by particle size, Brunauer–Emmett–Teller (BET) surface area, pore volume, zero-point charge (pHzpc), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Based on fitting the experimental data with various models, the isotherm and kinetic mechanism are found to be more appropriate with Langmuir isotherm and pseudo-second-order kinetics. The adsorption mechanism can be described by the intra-particle diffusion model, Bangham, and Boyd plots. The overall rate of adsorption is controlled by the external film diffusion of dye molecules. The maximum monolayer adsorption capacity, (qmax) 54.38 mg g−1 for RBBR dye, was obtained at a temperature of 301 K. From a thermodynamic standpoint, the process is endothermic, spontaneous, and the chemisorption process is favored at high temperatures. Desorption studies were conducted with various desorbing reagents in various runs and the maximum desorption efficiency (61.78% in the third run) was obtained using the solvent methanol. Reusability studies demonstrated that the prepared adsorbent was effective for up to three runs of operation. The investigation outcomes concluded that walnut shell biomass activated carbon (WSBAC) is a cost-effective, eco-friendly, and bio-sustainable material that can be used for synthetic dye decolorization in aqueous media.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3