Developing Bi-Gold Compound BGC2a to Target Mitochondria for the Elimination of Cancer Cells

Author:

Cui QingbinORCID,Ding Wenwen,Liu PanpanORCID,Luo Bingling,Yang Jing,Lu Wenhua,Hu Yumin,Huang PengORCID,Wen ShijunORCID

Abstract

Reactive oxygen species (ROS) homeostasis and mitochondrial metabolism are critical for the survival of cancer cells, including cancer stem cells (CSCs), which often cause drug resistance and cancer relapse. Auranofin is a mono-gold anti-rheumatic drug, and it has been repurposed as an anticancer agent working by the induction of both ROS increase and mitochondrial dysfunction. Hypothetically, increasing auranofin’s positive charges via incorporating more gold atoms to enhance its mitochondria-targeting capacity could enhance its anti-cancer efficacy. Hence, in this work, both mono-gold and bi-gold compounds were designed and evaluated to test our hypothesis. The results showed that bi-gold compounds generally suppressed cancer cells proliferation better than their mono-gold counterparts. The most potent compound, BGC2a, substantially inhibited the antioxidant enzyme TrxR and increased the cellular ROS. BGC2a induced cell apoptosis, which could not be reversed by the antioxidant agent vitamin C, implying that the ROS induced by TrxR inhibition might not be the decisive cause of cell death. As expected, a significant proportion of BGC2a accumulated within mitochondria, likely contributing to mitochondrial dysfunction, which was further confirmed by measuring oxygen consumption rate, mitochondrial membrane potential, and ATP production. Moreover, BGC2a inhibited colony formation and reduced stem-like side population (SP) cells of A549. Finally, the compound effectively suppressed the tumor growth of both A549 and PANC-1 xenografts. Our study showed that mitochondrial disturbance may be gold-based compounds’ major lethal factor in eradicating cancer cells, providing a new approach to developing potent gold-based anti-cancer drugs by increasing mitochondria-targeting capacity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3