Unpredicted Aberrant Splicing Products Identified in Postmortem Sudden Cardiac Death Samples

Author:

Coll Monica,Fernandez-Falgueras AnnaORCID,Iglesias Anna,del Olmo Bernat,Nogue-Navarro Laia,Simon Adria,Perez Serra AlexandraORCID,Puigmule Marta,Lopez Laura,Pico Ferran,Corona Monica,Vallverdu-Prats MartaORCID,Tiron Coloma,Campuzano OscarORCID,Castella Josep,Brugada Ramon,Alcalde MireiaORCID

Abstract

Molecular screening for pathogenic mutations in sudden cardiac death (SCD)-related genes is common practice for SCD cases. However, test results may lead to uncertainty because of the identification of variants of unknown significance (VUS) occurring in up to 70% of total identified variants due to a lack of experimental studies. Genetic variants affecting potential splice site variants are among the most difficult to interpret. The aim of this study was to examine rare intronic variants identified in the exonic flanking sequence to meet two main objectives: first, to validate that canonical intronic variants produce aberrant splicing; second, to determine whether rare intronic variants predicted as VUS may affect the splicing product. To achieve these objectives, 28 heart samples of cases of SCD carrying rare intronic variants were studied. Samples were analyzed using 85 SCD genes in custom panel sequencing. Our results showed that rare intronic variants affecting the most canonical splice sites displayed in 100% of cases that they would affect the splicing product, possibly causing aberrant isoforms. However, 25% of these cases (1/4) showed normal splicing, contradicting the in silico results. On the contrary, in silico results predicted an effect in 0% of cases, and experimental results showed >20% (3/14) unpredicted aberrant splicing. Thus, deep intron variants are likely predicted to not have an effect, which, based on our results, might be an underestimation of their effect and, therefore, of their pathogenicity classification and family members’ follow-up.

Funder

Obra Social “La Caixa Foundation”

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Study of Sudden Cardiac Death;International Journal of Molecular Sciences;2024-06-08

2. Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Autopsy;Current Issues in Molecular Biology;2024-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3