Omics Data and Data Representations for Deep Learning-Based Predictive Modeling

Author:

Tsimenidis Stefanos,Vrochidou EleniORCID,Papakostas George A.ORCID

Abstract

Medical discoveries mainly depend on the capability to process and analyze biological datasets, which inundate the scientific community and are still expanding as the cost of next-generation sequencing technologies is decreasing. Deep learning (DL) is a viable method to exploit this massive data stream since it has advanced quickly with there being successive innovations. However, an obstacle to scientific progress emerges: the difficulty of applying DL to biology, and this because both fields are evolving at a breakneck pace, thus making it hard for an individual to occupy the front lines of both of them. This paper aims to bridge the gap and help computer scientists bring their valuable expertise into the life sciences. This work provides an overview of the most common types of biological data and data representations that are used to train DL models, with additional information on the models themselves and the various tasks that are being tackled. This is the essential information a DL expert with no background in biology needs in order to participate in DL-based research projects in biomedicine, biotechnology, and drug discovery. Alternatively, this study could be also useful to researchers in biology to understand and utilize the power of DL to gain better insights into and extract important information from the omics data.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference195 articles.

1. A decade’s perspective on DNA sequencing technology

2. Sequencing technologies — the next generation

3. Human Genome Project: Twenty-five years of big biology

4. The Protein Puzzle;Westhoek,2011

5. Swiss Institute of Bioinformatics (SIB) neXtProt: Data Statistics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3