Development of Anti-LRRC15 Small Fragments for Imaging Purposes Using a Phage-Display ScFv Approach

Author:

Baurand Pierre-EmmanuelORCID,Balland Jérémy,Reynas Chloé,Ramseyer Mélanie,Vivier Delphine,Bellaye Pierre-Simon,Collin BertrandORCID,Paul CatherineORCID,Denat FranckORCID,Asgarov Kamal,Pallandre Jean-René,Ringenbach Laurence

Abstract

The human leucine-rich repeat-containing protein 15 (LRRC15) is a membrane protein identified as a marker of CAF (cancer-associated fibroblast) cells whose overexpression is positively correlated with cancer grade and outcome. Nuclear molecular imaging (i.e., SPECT and PET) to track LRRC15 expression could be very useful in guiding further therapeutic strategies. In this study, we developed an ScFv mouse phage-display library to obtain small fragment antibodies against human LRRC15 for molecular imaging purposes. Mice were immunized with recombinant human LRRC15 (hLRRC15), and lymph node cells were harvested for ScFv (single-chain variable fragment) phage-display analysis. The built library was used for panning on cell lines with constitutive or induced expression after transfection. The choice of best candidates was performed by screening various other cell lines, using flow cytometry. The selected candidates were reformatted into Cys-ScFv or Cys-diabody by addition of cysteine, and cloned in mammalian expression vectors to obtain batches of small fragments that were further used in site-specific radiolabeling tests. The obtained library was 1.2 × 107 cfu/µg with an insertion rate >95%. The two panning rounds performed on cells permittedenrichment of 2 × 10−3. Screening with flow cytometry allowed us to identify 28 specific hLRRC15 candidates. Among these, two also recognized murine LRCC15 and were reformatted into Cys-ScFv and Cys-diabody. They were expressed transiently in a mammalian system to obtain 1.0 to 4.5 mg of Cys fragments ready for bioconjugation and radiolabeling. Thus, in this paper, we demonstrate the relevance of the phage-display ScFv library approach for the fast-track development of small antibodies for imaging and/or immunotherapy purposes.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3